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A new method is developed for modeling helicopter high-speed impulsive (HSI) noise. The aerodynamics and
acoustics near the rotor blade tip are computed by solving the Euler equations on an unstructured grid. A
stationary Kirchhoff surface integral is then used to propagate these acoustic signals to the far field. The near-
field Euler solver uses a solution-adaptive grid scheme to improve the resolution of the acoustic signal. Grid
points are locally added and/or deleted from the mesh at each adaptive step. An important part of this procedure
is the choice of an appropriate error indicator. The error indicator is computed from the flowfield solution and
determines the regions for mesh coarsening and refinement. Computed results for HSI noise compare favorably
with experimental data for three different hovering rotor cases.

Introduction

T HE reduction of rotor noise is an important goal for both
civilian and military helicopters. Among the many con-

tributors to rotor noise, one of the loudest and most annoying
is called high-speed impulsive (HSI) noise. Impulsive noise is
characterized by a strong acoustic disturbance that occurs over
a very short period of time.

The production of HSI noise is strongly affected by a phe-
nomenon known as flowfield delocalization. Delocalization
occurs when the rotor speed increases to a point where super-
sonic flow on the rotor surface connects to the supersonic
region beyond the linear sonic cylinder. The sonic cylinder is
defined as the surface on which the relative speed between
the undisturbed freestream and an observer on the blade has
a Mach number equal to 1. An example of delocalized flow
is shown in Fig. 1. In this case, the flowfield is not delocalized
when the hover tip Mach number M, is less than 0.9. Delo-
calization occurs when Mt is increased beyond 0.9, and the
acoustic signal shows a dramatic increase in strength.

Once the flow on the rotor has delocalized, the surface
shock is free to propagate to the far field with little dissipation.
The resulting impulsive signal is perceived as a loud periodic
"popping" sound. The delocalization phenomena is highly
dependent on nonlinear transonic effects that occur near the
blade tip. For this reason, linear methods,1 that are based on
the Ffowcs Williams and Hawkings2 equation, cannot accu-
rately model this type of noise.

Numerical solutions of the full-potential, Euler, or Navier-
Stokes equations provide better models for these transonic
flow nonlinearities. Their main drawback, however, is that it
is computationally expensive to accurately solve the equations
over large domains. An excellent compromise is to model the
near-field transonic flow with a nonlinear computational fluid
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dynamics (CFD) method, and to couple this near-field solu-
tion to a Kirchhoff integral formula. The Kirchhoff formulation3

integrates a known pressure field over a prescribed surface,
and then propagates this to the far field. This Kirchhoff in-
tegration is much more computationally efficient than its CFD
counterpart.

Purcell and his colleagues4 7 were the first to use CFD
models to study the HSI noise problem. Their method solved
the full-potential equation to model the blade-tip aerody-
namics. The near-field CFD solution was then coupled to a
nonlinear Kirchhoff integral formula to propagate the acoustic
signal to the far field. A similar approach has been taken by
Xue and Lyrintzis8 using a rotating Kirchhoff formulation. In
both cases, the computed results showed reasonably good
agreement with experimental data for hovering rotors.

In other work, Baeder9 1() has modeled the same HSI noise
problem for rotors in both hover and forward flight with CFD
solutions to the Euler equations. The use of grid clustering
along the expected path of the acoustic signal enabled it to
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Fig. 1 Schematic of delocalization and helicopter rotor noise.
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be accurately captured out to three rotor radii. The structured-
grid Euler solver has also been coupled to a stationary Kirch-
hoff method that propagates the acoustic signal to the far
field.11

A key feature of HSI noise signals is that they are confined
to a very narrow region as they propagate away from the rotor
blade. An accurate CFD simulation must concentrate grid
points along the path of this acoustic signal in order to min-
imize numerical dissipation. All of the CFD approaches de-
scribed earlier make use of structured grids to discretize the
flowfield. It is very difficult to locally insert and delete points
in a structured mesh. This makes it hard to dynamically in-
crease the grid resolution along the HSI noise signals since
their trajectories are generally not known in advance of the
computation.

The alternative approach in this article is to use a solution-
adaptive unstructured-grid solver to model the aerodynamic
and acoustic fields close to the rotor blade. The major ad-
vantage of unstructured grids is the ability to efficiently insert
and delete points in the computational mesh. Thus, the grid
can locally adapt to improve the resolution of important flow
features. The HSI noise problem is a good candidate for so-
lution-adaptive schemes because the acoustic wave is very
distinct in both the near and far fields. This makes it easy to
identify the regions of the grid that need refinement.

This article demonstrates a new solution-adaptive CFD
scheme for solving the aerodynamic and acoustic fields around
hovering rotor blades. The near field is modeled with an
unstructured-grid Euler solver, whereas the far-field acoustic
propagation is computed using a newly developed Kirchhoff
integral method. The combined approach forms a powerful
tool for determining both near- and far-field HSI noise.

Euler Flow Solver
The near-field aerodynamics and acoustics are modeled with

a modified version of the three-dimensional Euler solver de-
veloped by Earth.12 The finite volume upwind scheme solves
for solution variables at the vertices of the mesh and satisfies
the integral conservation laws on nonoverlapping polyhedral
control volumes surrounding these vertices. Improved accu-
racy is achieved by using a piecewise linear reconstruction of
the solution in each control volume. This improved spatial
accuracy hinges heavily on the calculation of the solution
gradient in each control volume given pointwise values of the
solution at the vertices of the mesh. The solution is advanced
in time using conventional explicit procedures.

A rotary-wing version of this code was developed by Strawn
and Barth.13 The governing Euler equations have been re-
written in an inertial reference frame so that the rotor blade
and grid system move through stationary air at the specified
rotational and translational speeds. Fluxes across each com-
putational control volume were computed using the relative
velocities between the moving grid and the stationary far field.

An important highlight is that the code uses an edge-based
data structure rather than one based on elements. Edges of
a mesh are defined as the lines that connect pairs of vertices.
Since the number of edges is significantly smaller than the
number of faces, cell-vertex edge schemes are more efficient
than cell-centered element methods.12 Furthermore, an edge-
based method does not limit the mesh to a particular volume
element. Even though tetrahedral elements are used in this
article, any arbitrary combination of polyhedra could be used.

Mesh Adaption Scheme
Two types of solution-adaptive mesh strategies have re-

cently been used with unstructured-grid methods. The first is
a grid regeneration scheme where an initial solution is ob-
tained on a coarse mesh and then some error indicator is used
to designate regions in the flowfield where additional grid
points are required. The mesh is then regenerated with a
higher concentration of points in these targeted flow regions.

One major disadvantage of this scheme is that it is compu-
tationally intensive. This is a drawback for unsteady problems
where the mesh must be frequently adapted. However, the
resulting grids are usually well-formed with smooth transitions
between regions of coarse and fine mesh spacing.

A second strategy for producing solution-adaptive meshes
involves local modification of the existing grid in regions where
the solution is either changing rapidly or remaining relatively
constant. Grid points are individually added to the existing
mesh in regions where an error indicator is high, and removed
from regions where the indicator is low. The advantage of
this strategy is that relatively few points need to be deleted
or added at each coarsening/refinement step. However, com-
plex logic and data structures are required to keep track of
the points that are added and removed. Because of the im-
portance of flowfield unsteadiness in rotorcraft problems, we
have chosen this local grid modification scheme as the basis
for our dynamic mesh adaption.

The three-dimensional mesh adaption scheme is described
by Biswas and Strawn.14 It requires an initial solution on a
coarse tetrahedral mesh. An error estimate is then computed
for every edge of the mesh and is used to determine the regions
to be adapted. Particular attention is paid to the data structure
so that a tetrahedral mesh can be rapidly recreated after grid
points are removed and/or inserted. The points can be added
or deleted in an anisotropic manner in order to efficiently
resolve directional flow features. The goal is to optimally
distribute the mesh points for a given error indicator.

Error Indicator for HSI Noise
Simple error estimates based on gradients of flowfield quan-

tities have been used by several researchers. These types of
error indicators are easy to implement and have simple phys-
ical interpretations. More complicated error indicators could
be used, but they are probably not necessary for HSI acoustics
problems. Generally, almost any reasonable error indicator
can adequately target an impulsive signal such as an acoustic
wave or a shock.

Since we are interested in computing acoustic pressure sig-
nals, we have chosen pressure differences across edges of the
mesh to indicate flowfield regions that require mesh refine-
ment or coarsening. This error indicator works well both on
the blade surface and near the blade tip; however, it does not
adequately target the far-field acoustic wave for refinement.
This is because the strength of an HSI noise signal decreases
rapidly as it goes farther away from the blade tip. In fact, the
peak minimum acoustic pressure has been shown5 to attenuate
as

1
r > R., (1)

where Pmin(r) is the minimum local pressure at radial distance
r from the hub, P^ is the freestream pressure, and Rsc is the
radial location of the linear sonic cylinder.

This brings up an interesting general problem for error
indicators. If the goal of the error indicator is simply to min-
imize the global error in the solution, then it should probably
always target regions on the blade for refinement. This is
because the pressure disturbances on the blade are much larger
than those in the far field; hence, the error magnitude may
also be greater there. This is true even though the far-field
acoustic pressures may have a very large relative error. The
objective in this article is to resolve the acoustic signal in both
the near and far fields, not just to reduce the global error in
the solution. Hence, error estimates for the far-field acoustic
signals must be weighted equally with those on the blade
surface.

Equation (1) can be used to help determine a proper weight-
ing factor away from the blade tip. If the general shape of
the HSI acoustic wave is assumed to remain constant, the



756 STRAWN, BISWAS, AND GARCEAU

25

20-

15-

*
ef

• FIRST MESH
• SECOND MESH
X THIRD MESH
• FIT (K-21)

1.50 1.75 2.00
r / R

1.00 1.25

Fig. 2 Acoustic pressure curve fits for Mt = 0.95.
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Fig. 3 Acoustic pressure curve fits for Mt = 0.88.

error indicator should scale by Eq. (1). However, Eq. (1) is
undefined between the blade tip and the linear sonic cylinder.
A better choice is a function that behaves asymptotically like
Eq. (1), but is well-defined everywhere beyond the blade tip.
Such a function is given by

- P, I
Pmin(/?) - K[(rlR) - l\ (2)

where R is the radial tip location and K is a constant that is
determined from the computed solution on the mesh that is
ready to be adapted.

Equation (2) is an excellent representation of the behavior
of the acoustic wave for HSI noise. An example of this is
shown in Fig. 2 where the computed pressure data for various
meshes is compared with the curve fits obtained from Eq.
(2). For this case, M, = 0.95 and the acoustic flowfield is
delocalized. Each of the three meshes in the figure has a
different resolution in the region of the acoustic wave. These
meshes will be described later in this article. It is remarkable
that the curve-fits from Eq. (2) represent these minimum
acoustic pressures so well, for both coarse and fine meshes.
Similarly good results for the curve fits were obtained for the
M, = 0.9 test case that also shows a delocalized acoustic wave.

The final test case has M, — 0.88 and is not delocalized.
Curve-fits for this case are shown for three different mesh
resolutions in Fig. 3. Note that these curve-fits do not match
the minimum pressure data quite as well as for the two higher
Mach number delocalized cases. The effects of this mismatch
will be discussed in the next section.

Based on the curve-fits for HSI noise, we can write our
scaled error indicator as

||AP|{1 + K[(r/R) - 1]}
if
if

r < R
r > R (3)

where AP is the pressure difference across an edge and is
nondimensionalized by freestream density and speed of sound

squared. Note that there is no analytical expression for K,
which is instead, determined by fitting the minimum pressure
data on the mesh to be adapted.

Mesh Adaption Results
All three test cases chosen for this article are rectangular-

blade rotors in hover with NACA 0012 cross sections and
aspect ratios of 13.71. The calculations have Mt = 0.95, 0.90,
and 0.88, respectively. The first two cases show significant
delocalization at the tip, while the third is not delocalized.
These conditions correspond to experimental cases tested by
Purcell.6 7 They have been successfully simulated by a number
of researchers4'''; however, direct comparisons to these other
efforts will be limited. The primary purpose of the calculations
in this article is to demonstrate the capabilities of the new
computational method.

The first task in the mesh adaption strategy is to choose an
initial mesh. There are conflicting requirements for this mesh.
First, it is desirable to simplify the mesh generation process
as much as possible. A robust and generalized solution-adap-
tive procedure should be able to begin with an arbitrary initial
mesh and eventually reach an adapted final mesh that has
sufficient resolution to capture important flowfield features.
However, a totally general mesh could result in an extremely
coarse grid in the far field. The error indicators from the
resulting solution may be so inaccurate that the presence of
the propagating acoustic wave is completely missed. Clearly,
an initial mesh requires some minimum far-field resolution in
order to identify the presence of an acoustic signal.

The initial meshes chosen for these simulations are modified
versions of the meshes used by Baeder.10 These meshes have
been chosen largely for convenience. Because the rotors are
nonlifting, the mesh only needs to cover the upper half plane
due to symmetry. The original structured grids had dimen-
sions of 49 x 37 x 31 and extended out to three rotor radii
in the span wise direction. In order to obtain a coarser initial
grid for the current calculations, every other point was used
in both the chordwise and the normal directions to the rotor
surface. This reduced the grid size by a factor of four. Also,
the outer spanwise boundary for the calculation was reduced
to two rotor radii.

Unstructured tetrahedral grids were created from these
meshes by dividing each hexahedral element into five tetra-
hedra. The resulting unstructured grids contain 13,967 ver-
tices, 60,986 tetrahedra, and 6818 triangular boundary faces.
The outer boundaries of the mesh for the M, = 0.90 case are
shown in Fig. 4. Note that there is already some clustering
along the expected path of the acoustic wave. The mesh adap-
tion scheme will increase the resolution in this region.

An initial solution is computed on the coarse mesh by run-
ning 1000 iterations of the explicit flow solver. This required
about 20 CPU minutes on a Cray C-90 computer. The con-
verged solution is then used to compute an error indicator for
the refinement step to follow. For M, = 0.95, the error in-
dicator is computed from Eq. (3) using K = 21. This value

Fig. 4 Boundaries of the initial mesh for M, = 0.90.



STRAWN, BISWAS, AND GARCEAU 757

of K was determined from Fig. 2. Approximately 10,000 edges
are targeted for subdivision and a new mesh is formed that
contains 35,219 vertices. The mesh refinement step requires
only a few seconds on the C-90. The old solution is linearly
interpolated onto the new mesh points and the flow solver is
run for another 750 iterations with this as the starting solution.

The error indicator in Eq. (3), with K set from Fig. 2 to
17, is then used to both coarsen and refine the mesh. Once
again, the surface shock and the acoustic wave receive the
highest error values. Approximately 9000 vertices are re-
moved from the mesh, and then 45,000 new vertices are added.
Thus, the mesh points are redistributed in a way that better
captures the HSI noise signal. The final mesh has 72,123
vertices, 389,949 tetrahedra, and 15,076 boundary faces. The
flow solver is run for another 1000 iterations on this mesh,
requiring about 85 CPU minutes.

Calculations for the M, = 0.90 case proceeded in a similar
manner. Comparable numbers of mesh points were targeted
for coarsening and refinement at each adaption step. The final
mesh contains 77,467 vertices, 421,030 tetrahedra, and 15,854
boundary faces. Figure 5 shows the mesh and the normalized
pressure contours in the symmetry plane. Note that there are
two levels of refinement at the shock, near the blade tip, and
along the acoustic wave. The corresponding pressure contours
show large gradients in these regions.

Mesh adaption for the M, = 0.88 case proved to be more
difficult. For the initial mesh, the curve-fit constant K is set
from Fig. 3 to 92. Figure 3 also shows that the attenuation of
the minimum pressure is not as linear as those for the higher-
speed cases. This may be due to the fact that the acoustic
wave for M, = 0.88 is not delocalized. The straight-line curve-
fits for the second and third meshes do not agree well with
the data for 1.2 < r/R < 1.6. It is expected that the error
estimates will be underpredicted in this region, thereby re-
ducing the probability of further refinement. However, both
the blade surface and the far-field acoustic wave have correct
error indicator values.

The first mesh refinement for the M, = 0.88 case results
in a grid that is similar in size to the M, = 0.95 case. A large
number of new grid points are added at the next coarsening/
refinement step to test if the acoustic wave can be continu-
ously targeted for a second level of refinement. This was
unsuccessful, and most of the new points are placed near the
far-field boundary. The final grid size is 121,383 vertices,
674,584 tetrahedra, and 20,510 boundary faces. Even with
this large number of grid points, there is only one level of
mesh refinement for the acoustic wave between 1.2 < r/R <
1.6.

In retrospect, the same accuracy could have probably been
obtained with far fewer grid points. This example demon-
strates the importance of proper error scaling for the acoustic
wave away from the blade tip. A more effective error indicator

would have been to use a nonlinear error scaling function in
Eq. (3) so as to better fit the pressure values in Fig. 3.

Kirchhoff Formulation
Even though rotor HSI noise can be accurately computed

with a CFD method, it is not practical to extend the com-
putational domain beyond two or three rotor radii. The re-
sulting large numbers of mesh points make this calculation
prohibitive. An excellent solution to this problem, however,
is to use a classical Kirchhoff integral formulation to compute
the acoustic signals at arbitrary locations in the far field. As
mentioned earlier, this type of approach has been used by a
number of other researchers. The method presented here is
similar to that used by Baeder et al.11; however, significant
differences exist in the methods used to obtain the pressure
derivatives on the Kirchhoff surface.

A classical Kirchhoff integral for a stationary surface can
be written as

1 f [cos= T- —477 J.v [ r-
0 cos 6 1

<]r (4)

The relevant terms in this equation can be described with
reference to Fig. 6. Here, the observer is located at jc with
time t. The distance between the observer and a point on the
Kirchhoff surface is given by r|, and 0 is the angle between
rand the normal«to the surface. P, P,,, and P, are the acoustic
pressure, and its normal and temporal derivatives, respec-
tively, on the Kirchhoff surface. All pressure values and de-
rivatives are evaluated at the time of emission r, also referred
to as the retarded time.

The speed of sound in Eq. (4) is given by a.,_, which is
assumed to remain constant. This means that the cylindrical
Kirchhoff surface must be placed at a radial distance that is
sufficiently large so that flowfield nonlinearities are small. On
the other hand, the CFD solution is less accurate as it gets
farther away from the blade tip due to numerical dissipation.
A good compromise location for the Kirchhoff surface was
found to be at r/R = 1.4. The nonlinearities are small here,
and the CFD solution is still highly accurate. This statement
is backed up by computed results presented later in this
article.

Two steps are required to evaluate the integral in Eq. (4).
First, the Euler solution must be interpolated onto the Kirch-
hoff surface. The Kirchhoff surface is a two-dimensional
Cartesian mesh with uniform spacing in the azimuthal direc-
tion and nonuniform spacing in the vertical direction. Con-
tributions to the integral from the top and the bottom surfaces
are neglected since the cylindrical surface extends out to about

Fig. 5 Final mesh and computed pressure contours for Mt = 0.90.

Observer 9(x,t)

Fig. 6 Schematic for the Kirchhoff surface integration.
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20 chord lengths above and below the plane of the rotor.
Moreover, most of the HSI noise propagates in the rotor plane
for the test cases in this article. The uniform azimuthal spacing
is to facilitate the evaluation of the pressure field at the re-
tarded time. It is important that this uniform mesh spacing
be commensurate with the finest mesh spacing for the CFD
grid. For the cases in this article, 7000 azimuthal mesh points
are used, which more than exceeds this requirement. A total
of 119 points are used in the vertical direction, with spacings
similar to those in the CFD grid.

Pressure values for the Kirchhoff surface are linearly in-
terpolated from the unstructured tetrahedral mesh. The two
pressure derivatives are directly computed at the vertices
by the flow solver and these are also interpolated onto the
Kirchhoff mesh. It is important that the pressure derivatives
be accurately evaluated in a manner that is consistent with
the CFD solution algorithm. This means that these derivatives
must be properly upwinded near impulsive flow features such
as shocks.

The second step in solving the Kirchhoff integration in Eq.
(4) is to evaluate the pressure terms at the retarded time r.
The delay between r and the observer time t is the time it
takes the acoustic signal to travel from the Kirchhoff surface
to the observer:

t - T = \r\/ay_ (5)

Because the rotor is in hover, the pressure values on the
Kirchhoff surface at any retarded time can be determined by

simply rotating the blade-fixed hovering solution around the
azimuth. There is a one-to-one correspondence between time
delay and azimuthal angle.

Comparisons with Experiment
Computed acoustic pressures from the three test cases can

be compared to experimental results from Purcell.6-7 He mea-
sured acoustic pressures from a 7th scale model of a UH-1H
rotor with two untwisted rectangular blades and NACA 0012
airfoil sections. These blades had a 3-in.-chord length and an
AR of 13.71. A range of hover tip Mach numbers were tested
from 0.85 to 0.95. Delocalization was found to occur between
M, = 0.88-0.90. For each Mach number, acoustic pressures
were measured at four radial locations. The first location
corresponded to the linear sonic cylinder (rlR — I/A/,). The
other three microphones were located at rlR = 1.78, 2.18,
and 3.09. Results for rlR = 2.18 are very similar to those at
rlR — 1.78 and are not reported here.

Figure 7 compares the computer predictions to experimen-
tal data for M, = 0.95. The sonic cylinder result at rlR =
1.053 shows good agreement between computation and ex-
periment for the general wave shape. The peak negative pres-
sure is somewhat overpredicted, but the impulsive shock is
well-captured by the computation. The acoustic wave is clearly
delocalized, as evidenced by the asymmetry of the signal.

The rlR = 1.78 radial location shows computed results that
have been obtained by three methods. The first result comes
directly from the Euler solution on the final adapted mesh.
The second is obtained by Kirchhoff integration on a surface
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Fig. 7 Computed and experimental acoustic pressures for M, = 0.95.
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Fig. 8 Computed and experimental acoustic pressures for M, = 0.90.
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Fig. 9 Computed and experimental acoustic pressures for Mt = 0.88.

located at s/R = 1.4. The excellent agreement between the
two computed results serves as a validation of the Kirchhoff
approach as well as demonstrates the grid independence of
the CFD solution near the outer boundary. Both solutions
also show good agreement with experimental data except for
a small region near the beginning of the acoustic signal. This
discrepancy may be due to a lack of resolution of the CFD
grid in this region. The error indicator in Eq. (3) targets edges
for refinement that have large first derivatives. This strategy
refines the mesh in the middle of the acoustic wave, but not
so much at the beginning or the end. An error indicator that
targets second derivatives of pressure might do a better job
in these areas. The third computational result shows the so-
lution on the initial coarse mesh and demonstrates the merits
of the solution-adaptive method. This uniform-mesh solution
excessively diffuses the impulsive signal, significantly under-
predicts the minimum pressure, and severely distorts the gen-
eral wave shape.

The acoustic pressure plots for rlR = 3.09 show similar
good agreement with the data as was seen for the other two
radial cases. The computed results are obtained by Kirchhoff
integration on surfaces at two radial locations: s/R = 1.4 and
1.7. In general, the shape and duration of the acoustic signal
is well-captured, but the magnitude of the peak negative pres-
sure is slightly overpredicted. Results from these two inte-
grations show excellent agreement with each other except for
some small discrepancies at the end of the acoustic wave. The
fact that the Kirchhoff results are insensitive to the surface
location indicates that the effects of any nonlinearities beyond
these Kirchhoff surfaces are small. It also provides evidence

of grid independence of the Euler solution. If numerical dis-
sipation were significant, then the far-field acoustic pressures
would be affected by the location of the Kirchhoff surface.

Computed and experimental acoustic pressures for M, =
0.90 are shown in Fig. 8. The sonic cylinder calculation at
rlR = 1.111 shows excellent agreement with the data, both
in the wave shape and the pressure magnitudes. However,
the computed solutions at the other radial locations show that
the peak negative pressure is slightly underpredicted. The
general wave shapes are well-captured, including the impul-
sive noise and the pressure asymmetry.

Finally, Fig. 9 shows computed and experimental acoustic
pressures for M, = 0.88. This case is not delocalized, and the
experimental and computational results show a more sym-
metrical wave shape than in the higher-speed cases. The com-
parison between experiment and computation is similar for
all three radial locations. The general wave shape is well-
captured, but the magnitude of the predicted peak negative
pressure is approximately 10% too low at all radial locations.
The excellent agreement between the Kirchhoff and Euler
solutions at rlR = 1.78 shows that lack of grid resolution for
either method is probably not the cause for this underpre-
diction. Also, Baeder et al.11 show very similar results for this
case using their structured-grid Euler solver. Perhaps the in-
viscid approximation in the Euler solver has an effect on the
computed results. The true flowfield around the blade tip
involves localized flow separation and shock/boundary-layer
interactions. The Euler solver does not model these, and their
effect on the acoustic signals is not known.

Summary and Conclusions
In general, the computed results from all three cases show

good agreement with Purcell's experimental data.6-7 They also
show excellent agreement with the structured-grid Euler cal-
culations of Baeder et al." The three cases span HSI noise
conditions ranging from nondelocalized, to slightly delocal-
ized, to fully delocalized. The overall adaptive-grid scheme
works best for the two delocalized cases, which is not sur-
prising, since these have the most clearly defined acoustic
signals.

The results in this article represent the first time that so-
lution-adaptive CFD methods have been used to model prob-
lems in helicopter acoustics. Although these capabilities were
not specifically addressed in this article, the unstructured-grid
approach provides greater flexibility in grid generation and
mesh adaption around complicated rotor planforms, but re-
quires more computational time than conventional structured-
grid schemes.

The choice and scaling of an error indicator are crucial to
the success of any adaptive-grid computation of HSI noise.
The ability to locally refine the grid is only useful if new mesh
points can be placed where they will improve the solution. In
three dimensions, several thousand grid points can be easily
wasted through the poor choice of an error indicator. We
have developed a simple error indicator and a scaling factor
that are appropriate for HSI noise. This article has demon-
strated that the adaptive strategies that are used with this
error indicator yield excellent results for HSI noise, partic-
ularly when the acoustic signals are strongly delocalized.

The combination of an Euler CFD method and a Kirchhoff
formula is a powerful tool for the prediction of helicopter
acoustics. The nonlinear three-dimensional and transonic ef-
fects near the blade tip are accurately modeled by the CFD
solver and the Kirchhoff integral formula presents an efficient
way to propagate these signals to the far field. Clearly, the
next step is to implement these methods in forward flight.
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